0=-16t^2+96t+120

Simple and best practice solution for 0=-16t^2+96t+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+96t+120 equation:



0=-16t^2+96t+120
We move all terms to the left:
0-(-16t^2+96t+120)=0
We add all the numbers together, and all the variables
-(-16t^2+96t+120)=0
We get rid of parentheses
16t^2-96t-120=0
a = 16; b = -96; c = -120;
Δ = b2-4ac
Δ = -962-4·16·(-120)
Δ = 16896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16896}=\sqrt{256*66}=\sqrt{256}*\sqrt{66}=16\sqrt{66}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{66}}{2*16}=\frac{96-16\sqrt{66}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{66}}{2*16}=\frac{96+16\sqrt{66}}{32} $

See similar equations:

| X/9x-7=8 | | -2-13.8x=8x-(6x+1 | | 2x+5=21x+52 | | -.5y=32.5 | | -5y=32.5 | | 2x+5=21x=52 | | 2(3y+8)=80 | | 4(m-5)+3m=1 | | E^6x=36 | | 4y-2+3y+2=126 | | 9q=48 | | -5x-8=72 | | 3x0-(4x)=12 | | y+.0875y=250 | | 8*n/4=24 | | 6x+7x-8x=4x+8-7x | | k(k+3)=3k+81 | | -3(1-2x)=9x+3 | | r-4/3r=10 | | -1/2x+3/4=5/6 | | 2(4c-1)=4c+9 | | 5–4s=6s–5 | | 6y-12=25 | | 3(m-4)=4(11-m) | | 11x+35+x=180 | | -1.9x-2=-1.4x+2 | | 1.9x-2=-1.4x+2 | | 3x^2+0.5x=0.06 | | .5–4s=6s–5 | | 3x^3+x+22=0 | | 7x-7=8x+6 | | 3x=(2x+5)(4+x) |

Equations solver categories